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THREE POINTS OF GREAT HEIGHT ON ELLIPTIC CURVES 

ANDREW BREMNER AND DUNCAN A. BUELL 

For D. H. Lehmer, and his love of numbers 

ABSTRACT. We give three elliptic curves whose generators have great height, 
demonstrating along the way a moderately efficient method for finding such 
points. 

1. INTRODUCTION 

Let p _ 5 (mod 8) be a prime number. Bremner and Cassels have verified 
that the rank of the Mordell-Weil group of the elliptic curve 

y2 = X(X2 + p) 

over Q is 1, for p < 1900 [2], and Bremner has extended this to p < 20000 [1]. 
For all p < 5000 except for p = 3917, 4157, and 4957, explicit coordinates 
of a generator are known. In this paper we fill in these gaps by presenting the 
coordinates of generators for the Mordell-Weil groups of the following curves: 

For y2 = X(X2 + 3917) 

1 3191326145 6422472921 

X_ 5873290251 8863871195 1947136699 2233127128 9213974121 
548834475 8892451852 

7451707440 2156457012 3908977288 1880026829 0258264900 

422605 
7873470623 6958538698 4222606144 1026117548 7546042859 

. ,_8908260829 3814216233 8843167731 8301133130 4053463581 
1285 

7664123892 6034798978 3481163135 9345003535 1077250240 
1959049281 1437042584 0089183445 3200116260 9377357000 

For Y2=X(X2+4157) 

5332499248 7599063389 
1066356325 7642601861 0337363601 2044939282 4882088521 

44003585 6451313819 
9226472581 4648511569 0449920470 8057736801 3774720100 
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44108 
4155760469 7993705069 3168537280 6635440124 9847767197 

. 2013041097 2556677066 6836701935 5981000014 3598411181 
29 

1898658996 7029975275 2870403348 9392140054 6948318468 
1015324839 9597607540 4475037731 3582116884 4060801000 

For y2 = X(X2 + 4957) 

2578 6593364983 8869943482 2726741534 
8642803837 2862724530 1355555758 7191972747 6066494521 

2 7544734678 8209581109 2823066215 
4526375537 5984629139 2220985954 5339442186 6359716100 

131315 4053999120 5952869312 
1641825016 9330523130 1417335322 2596278362 4828231988 

y 0210527534 7918347549 9579064513 0766126108 4369453931 
4 5714912217 3449737242 

8932870955 5522703332 6956396590 2104635417 4424919684 
8609580514 6737003842 7423528188 6907027288 7875659000 

The respective (canonical) heights of these points [1] are approximately 
162.61, 160.83, and 192.10. 

2. COMPUTATION 

The method of descent outlined in [1] leads us to search for simultaneous 
solutions r, s, t, u to pairs of equations. 

For p = 3917: 

(2.1) 2(r2 _ S2) _ lOrs - 3(ru + st) + 10(rt - su) + 3(t2 _ u2) + 2tu = 0, 

(2.2) 7(r2 _ S2) - 2rs + 2(ru + st) - (t2 _ u2) = 0. 

For p =4157: 

(2.3) 32(r2 _ S2) - 382rs - 27(ru + st) - 12(rt - su) - (t2 _ u2) - 2tu = 0, 

(2.4) 203(r2 _ S2) + 26rs + 2(ru + st) - (t2 _ u2) = 0. 

For p = 4957: 

(2.5) 16rs - 3(ru + st) - 4(rt - su) + (t2 _ u2) = 0, 

(2.6) 4(r2 _ S2) + 6rs + 2(ru + st) - (t2 _ u2) + 2tu = 0. 

We will illustrate the computational method using p = 3917 as an example. 
For p = 3917 we are searching for simultaneous solutions r, s, t, u to the 

pair of equations (2.1) and (2.2). From the known height of the generator (see 
[1]) we expect a solution to exist in the approximate range 

0 < Irl, lsl, ltl, Jul < 17000. 

A brute force search over 344. 1012 1.3* 1018 possible quadruples would be 
infeasible, so it is fortunate that it is not necessary. 

We rewrite (2.2) in a manner more amenable to computation: 

(2.7) (t _ S)2 = (u + r)2 + 6(r2 _-S2) - 2rs = (u + r)2 + K. 
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Simplification 1: Symmetry. We need only search over r > 0, s > 0. 

This is because under (r, s) -* (-r, -s) we have K -* K, and under 
(r, s) -* (s, -r) or (r, s) -* (-s, r) we have K -* -K. We will search only 
over nonnegative r and s and then solve (2.7) as N2 = M2 + IKI. We will 
then let u + r = +M and t - s = +N or the reverse, whichever is appropriate. 

Simplification 2: Congruences. Most r, s pairs can be eliminated by congruence 
conditions. 

By analysis or simply by enumeration, we find that only 9 of the 25 possible 
pairs (r, s) modulo 5 can be completed to a quadruple (r, s, t, u) which solves 
both (2.1) and (2.2) when treated as congruences and not equations. Further, 
only 13 of 49 pairs modulo 7, 73 of 169 pairs modulo 13, and 129 of 289 pairs 
modulo 17 can be completed. Working modulo 8, we find also that r and s 
must both be even. 

In fact, we can sieve out the impossible (r, s) pairs for primes q as high as 
we wish, provided we can store and access a q x q bit matrix to determine by 
table lookup whether a pair is possible. Using the primes through 47, we find 
that of the 289 million potential pairs (r, s) only 25153, or 87 per million, 
pass all the sieve tests to generate values of K for which N2 = M2 + IK need 
be solved. Our experience on these three curves is that, for most of the small 
primes, between 30% and 60% of the potential pairs are impossible for each 
prime. Even with bad luck, then, for every two primes used in the sieve, the 
number of possible pairs is reduced at least by half. 

A search for solutions to N2 = M2 + IKI is especially simple. Given IK , 
the smallest choice of N is [ XK] + 1 , and we compute N2 by multiplication 
only for this smallest N. As we loop on M from 1 to some limit, then, we can 
update the values of the right- and left-hand sides without multiplying, using 
the standard formula (x + 1) x2= +2 x ? x + 1. When we update M and 
the right-hand side, if this is larger than the current left-hand side, we simply 
update the left-hand side until it is no longer smaller. For large M and N 
these will be alternating operations and thus will be very efficient. For two of 
the three curves here, it can also be determined that M is even and N odd. 
This further limits the search. 

With these simplifications, a C program running on the CRAY 2 at SRC tests 
r in a block of 1000 integers and all s from 0 through 17000 in about 80 seconds 
of CPU time (on one head of the CRAY 2). Our program was moderately 
efficient but not extraordinarily so, and improvements in speed certainly could 
have been made. Using this program, we find that 

(r, s, t, u) = (2684, 7586, 5487, -21317) 

is the desired solution. 
The computation for p = 4157 is entirely similar, and we obtain the solution 

(r, s, t, u) = (9940, 1222, -140939, -25343). 

In this case, there were 68013 pairs (r, s) which passed the sieve, and the 
program ran about 50% slower than for p = 3917. 

For p = 4957 rewrite (2.6) as 

(2t + r _ S)2 = 2. (u + t + r)2 + 7(r2 _ S2) + lOrs. 
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A first search, with r and s bounded above in absolute value by 17000 as 
with the previous two curves, failed to find a point. We therefore increased the 
bounds to 25000, and the bounds on N and M to 300000. At this point, only 
92417 pairs (r, s) pass through the sieve, and we find the solution 

(r, s, t, u) = (20147, 7406, 43588, -8808). 

3. A GENERAL METHOD, AND THE "NEXT" CASE 

The general method we have employed should be apparent. By manipulating 
or combining the two quadratic polynomials in four variables, we create a single 
equation of the form 

(3.1) AN2= BM2+K. 

In this equation, we have made K a function of only two of the variables and 
arranged it so that the other two do not both appear in N and M. This allows 
us, having solved (3.1), to extract the third and fourth variables without further 
search. With a judicious choice of A and B in (3.1) (A = B = 1 is clearly 
best possible), the search for solutions to (3.1) can be made very efficient. 

The limitations of our method become apparent, however, when we apply it 
to the "next" hard curve, y2 = X(X2 + 17477); see [1]. 

The descent argument leads to the pair of equations 

(3.2) r2 _ s2+ 11 (ru + st) - 3(rt - su) - 2(t2 - u2) - 2tu = 0, 

(3.3) r2-s2+6rs+ t2-U2+2tu=0, 

and (3.3) diagonalizes to the very simple 

(3.4) (t + U)2 = 2U2 + S2 - 6rs - r2. 

However, the estimated bounds on the variables are now on the order of 
1010. Sieving with the 25 primes less than 100, we find that about 1.75 pairs 
(r, s) per million pass through the sieve. If each of the next 75 primes had 
a (pessimistic) sieve success fraction of .7, and we use exactly 1010 as a loop 
bound, we would need to test only 422 pairs in the inner loop. This number 
of pairs is not extraordinary, although the enumeration of the pairs could not 
be done simply by counting but would require incorporating the sieve into the 
loops. With the inner loop, however, now on the order of 1010 instead of 104, 
the feasibility of this computation would depend very much on the number 
of pairs to be tested staying small. The sieving can be expected to be more 
successful, so that the estimate of 422 pairs is no doubt high, but this gain 
could be offset if the estimate of 1010 for the loop bound is low by one or two 
orders of magnitude in each variable. We strongly suspect that finding a solution 
this way is out of reach, certainly without the expenditure of an estimated three 
years of CPU time, which is clearly unwarranted. 

With sufficient courage, a further descent could be carried out on the 
pair of equations (3.2, 3.3) by looking for a linear combination of the two 
quadrics which is singular (singular combinations in fact exist over the field 
Q(V/106 - 79i) ). However, the details are sufficiently laborious that we have 
not attempted to carry them through. 

The referee has convincingly pointed out to us the merits of calculation using 
Heegner points, where finding a point on a curve of rank 1 can be expected to 
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be an operation which is polynomial in the conductor, as opposed to exhaustive 
search, which can be exponential. For the family of curves y2 = X(X2 + p) it 
seems to be that the limits for exhaustive search are reached essentially by the 
examples of this paper, and the only sensible way to search for a generator on 
the curve y2 = X(X2 + 17477) would be by means of Heegner points. 

BIBLIOGRAPHY 

1. A. Bremner, On the equation y2 = X(X2 + p), Number Theory and Applications (R. A. 
Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 3-23. 

2. A. Bremner and J. W. S. Cassels, On the equation y2 = X(X2 + p), Math. Comp. 42 
(1984), 257-264. 

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85287 
E-mail address: andrew@math.la.asu.edu 

SUPERCOMPUTING RESEARCH CENTER, 17100 SCIENCE DRIVE, BOWIE, MARYLAND 20715 
E-mail address: duncan@super.org 


